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ABSTRACT 

An intensive numerical study for the resonance scattering of malignant breast cancer tumors 

is presented. The rigorous three-dimensional electromagnetic model, based on the equivalence 

theorem, is used to obtain the induced electric and magnetic currents on the breast and tumor 

surfaces. The results show that a non-spherical malignant tumor can be characterized based on 

its spectra regardless of its orientation, the incident polarization, or the incident or scattered 

directions. The tumor’s spectra depend solely on its physical characteristics (i.e., the shape and 

the electrical properties), however, their locations are not functions of its burial depth. This work 

provides a useful guidance to select the appropriate frequency range for the tumor’s size. 

I. INTRODUCTION 

Extensive scientific research has been conducted in recent years to defeat the breast cancer, 

however, this disease remains a potential life threatening for many women. Several imaging 

modalities were developed and used to detect the breast cancer, e.g., the X-ray mammography, 

which currently is considered the most reliable method, the ultrasound, the magnetic resonance 

imaging, and others as reviewed in 111-[2]. Recently, microwave tomography has been shown a 



i 

promise for early detection of breast cancer [3]-[S], in addition, the microwave imaging has been 

used in several medical applications [9]. The electrical properties of the normal breast tissues, 

the benign andor the malignant tumors and the breast skin layer represent key issues for this 

technique. Measurements of the electric dielectric constants of these tissues over a range of 

frequencies are reported in the literature [lo]-[17]. The microwave radar technology has been 

investigated in detecting and imaging the malignant breast tumors [ 181-[24]. In these papers, the 

computational electromagnetic method, the finite difference time domain (FDTD), along with 

signal processing techniques were used to simulate and analyze several microwave systems 

leading to interesting and promising results. 

In our previous research on the humanitarian anti-personnel mine detection application using 

the ground penetrating radar (GPR), it was very difficult to distinguish between the scattered 

signal from the rough ground where a small plastic mine was buried and the scattered signal 

from the ground without buried mines [25]-[28]. This difficulty was due to the small size of the 

mine relative to the wavelength, the soil medium was very lossy in some cases, and the mine’s 

electrical properties were very similar to those of the surrounding ground when the soil was dry. 

In addition, the considerable clutters due to the presence of the random rough ground, the soil 

inhomogeneities and the presence of benign objects nearby the target, greatly obscured the 

detection process. 

Similarly, in the breast cancer application, several difficulties can be encountered such as; the 

normal breast tissues are very lossy at the microwave frequencies, compared with the soil in 

GPR applications [25]-[28]; the small size of the tumor for the early detection purpose; and the 

heterogeneities of the breast tissues. These factors make detecting the tumor in the breast as 

difficult as sensing the plastic target in the minefield. 
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Several researchers had reported that the dielectric and conducting objects could resonate at 

certain frequencies in the electromagnetic spectrum [29]-[40]. When these frequencies are 

independent of the excitation, they are located in the complex plane and called the natural 

frequencies. Their locations depend only on the object’s size, shape, and material. On the other 

hand, these objects can also resonate upon excitation by a continuous wave at real fiequencies as 

reported in [29], where Mie solution was used. The resonating objects were located in the fiee 

space in [29]-[37], while they were buried beneath an interface in [18], [38]-[40]. In [29], the 

immersed object in free space was excited by plane waves, and the scattered radiation was 

monitored as function of the frequency in order to obtain their resonance spectrum. This 

approach is adopted here to obtain the resonance spectra of the malignant tumors buried in the 

lossy normal breast tissues, as initiated in [18]. In this situation, the malignant tumors act as low 

Q-resonators since their dielectric constants are lossy as well. Moreover, the magnitude of the 

scattered waves at the resonant fiequencies is considerably reduced due to the large absorption of 

the transmitted waves in breast tissues. However, these scattered fields exhibit an obvious 

resonant radiation when a tumor is present in the breast. It is important to emphasize that the 

current work is focused on objects buried under an interface, i.e. inhomogeneous lossy medium, 

while the work presented in [29] was focused on lossless dielectric objects immersed in the free 

space. While, the Mie solution was used in [29], a frequency-domain fast computational 

electromagnetic technique is used in this work. This technique is based on the fast multipole 

method hybridized with the steepest descent integration rule (SDFMM) [41]-[MI, [25]-[28]. In 

particular, the multiple interaction method (MIM) combined with the SDFMM (MIM-SDFMM 

[45]) is employed in this work, with using the method of moments (MOM) only for validation. 
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The formulations of the electromagnetic model are discussed in Section 11, the numerical 

results are presented in Section I11 and the concluding remarks are summarized in Section IV. 
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11. METHODS 

The rigorous 3-D electromagnetic model, based on the classical equivalence theorem, is used 

to simulate scattering from malignant tumors buried in normal breast tissues. This model was 

successllly implemented in the humanitarian anti-personnel plastic mine detection applications 

[25]-[28]. Basically, the surfaces of the breast and the tumor are discretized using the RWG 

(Rao, Wilton, Glisson) triangular patches [46]. Upon approximating the induced equivalent 

surface currents using the vector basis functions and testing the integral equations with the same 

basis functions; a set of linear system of equations was obtained as [25],[47]: 

This system of equations incorporates all the interactions between self-elements on the breast 

surface ( zs,s ), elements on the breast and the tumor surfaces ( zs.T and z,, ), and self-elements 

on the tumor surface zT,. The vector & represents the incident tangential electric and 

magnetic fields on the breast surface. This system of equations needs to be solved for the 

unknown current coefficients Is and TT, excited on the breast and tumor surfaces, respectively. 

Solving (1) using the MOM would be computationally very expensive, however, the MOM 

will be used for validation. The first method to solve (1) is to implement the complete SDFMM, 

which could be inefficient computationally for large burial depths of the tumor. The second 

method to solve (1) is to implement the MIM-DFMM as discussed in [45]. Basically, the later 

method solves two separate linear systems of equations for the unknown coefficients while 

exploiting an iterative procedure to update the incident fields on both the breast surface (S) and 

the tumor surface (T). These two systems of equations are given by [45]: 





in which n represents the number of multiple interactions between the tumor and the breast 

surface, n = 0, 1, . . . , where n = 0 implies that the induced currents on the breast surface are due 

only to the illuminating source and no interaction took place with the tumor. The algorithm 

starts by assuming no buried tumors are present in the breast and solving (2a) for the unknown 

coefficients on the breast surface, Le. 7;). These coefficients are induced due to the tangential 

incident fields K@'. Consequently, the induced electric and magnetic currents on the breast 

surface, i.e. 7;) and a'), excite the buried tumor with the fields c(') in (2b). These fields are 

calculated using the near-field surface integrations given by [48]: 

p;(x,y,z)= -- 1 l f l k x  J s ( x ' , y ' , z ' ) ) T e x p ( - i k R ) d S ' ,  1 + ikR ~ ~ ( x , y , z ) = - V x H T  1 - A  (3a) 
4n st R IO& 

(3b) 
1 exp(- ikR) us', rr,.(x, y,z) = - - v x  1 E; E . (x , y , z )=  --vx p s ( x ' , y ' , z ' )  

R i o p  4n s' 

where the total electric and magnetic fields are ( E A  + E F )  and ( H A  + H F  ), respectively, the 

fields associated with the vector potentials 2 and F are represented by the superscripts A and F, 

k is a unit vector between the source and observation points with length R, and k is the wave 

number of the surrounding medium with permittivity and permeability E and p,  respectively, 

and dS' is the differential surface element on the breast. The next step is to solve (2b) for the 

unknown coefficients, i.e. $), in order to obtain the electric and magnetic currents on the tumor 

surface, J!) and @I, respectively. This process is to be repeated till the surface current 

solutions converge. 

The other advantages of using the MIM-SDFMM is its capability to calculate the 

contribution of each wave interaction between the tumor and the breast interface, which provides 
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a good insight to the scattering mechanism involved. Moreover, it enables calculating the 

induced surface currents on the breast due to only the presence of the tumor [45]. This implies 

that no subtraction process is used in this work to obtain the tumor's signature, which leads to 

faster and more efficient results. The SDFMM is used to solve (2a) which is associated with the 

breast surface, where the impedance matrix z,, is converted to a sparse one. It is important to 

mention that the order of matrix z,, is much large than the order of the impedance matrix z, T ,  

which is associated with the tumor's surface. This is due to the small size of the tumor compared 

with the breast surface. Therefore, it is more efficient to use the MOM to solve (2b). The 

computational complexity of the MIM-SDFMM is discussed in detail in [45]. 

The electric and magnetic currents induced on the breast surfice due to just the tumor are 

J s = J s  -(l) + Notice, that the 

driving surface currents Jr) and @"I, are induced on the breast due to only the illuminating 

source (i.e. transmitting antenna), assuming,that no tumors are buried in the breast. 

- + - - - + .?"I s 7  and us = @) + @) + - - - + at), respectively. 

In this work, the thickness of the breast skin (i.e., the skin layer) and inhomogeneities are not 

incorporated in the electromagnetic model discussed above. However, the model includes an 

interface between the air and breast tissues where the tumor is buried (i.e., accounts for three 

different homogeneous regions). The numerical results in Section I11 are based on computing the 

scattered intensity represented by the radar cross section (RCS) defined as (4nr21ES1' /2q0Pi) 

[48], where E' is the scattered electric field, P i  is the incident power [49], and r is the distance 

from the scatterer to the observation point. 

It is important to emphasize that the SDFMM is a surface integral equation based algorithm 

as derived and discussed in [25]-[28], [43]-[45]. There is no restriction on the object's shape as 
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long as its surface can be disretized into triangular patches, which needs special software for this 

discretization. Moreover, the SDFMM does not rely on the object's symmetry similar to other 

MOM based models, e.g. [39], however, the SDFMM cannot be used to simulate a region if the 

dielectric constant is varying gradually from one point to another. In this case, the volume 

integral equations should be used instead, where the scatterer's volume is discretized into 

volumetric elements. The main advantage of the SDFMM is its O(N) computational complexity 

for both the CPU time and computer memory, where N is the total number of surface current 

unknowns, compared with the MOM that requires O(N *) to solve the same problem. 

Several key issues will be discussed in detail such as the electrical properties of breast 

tissues, the geometry of the breast and the spectrum of spheres immersed in air or buried beneath 

an interface. These issues are discussed in depth as follows: 

i. Electrical properties of breast tissues: 

The relative dielectric constants of the malignant tumor and normal breast tissues are 

obtained from the reported measurements in the literature [lo]-[ 171. The frequency dependence 

of the dielectric constauts (E, = E' - j E "  ) for the normal breast tissues and malignant tumor are 

plotted in Fig. 1 versus the frequency fiom 1 to 10 GHz. These results are calculated using 

equation (1) in Ref. [20], which was obtained by curve fitting the published measured data up to 

3GHz. A variety of dielectric constants either obtained from the actual measurements data [lo]- 

[ 171 or from the curve fitted data of Fig. 1, will be used in Section 111. 

ii. Breast geometry: 

Two different geometries for the breast are simulated in this work as shown in Figs. 2a-b. In 

Fig. 2a, the breast surface is assumed flat which represents an ideal situation ilS]. However, in 

Fig. 2b, the breast surface is simulated as a 3-D curved geometry which can represent a patient 
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lying on her back [20]-[21]. If the patient is lying on her stomach, the breast will have more 

c.urved geometry (more cylindrical shape) [22]-[23], which will not be considered in this work. 

iii. Validation with Mie's solution in [29]: 

It is important to examine the resonant radiation of just a dielectric sphere immersed in air, 

before investigating the more complicated scatterer that contains a sphere buried in a different 

medium as shown in Figs. 2a-b. 

In Example 1, three dielectric constants of the sphere are assumed as E, = 50 (lossless), 

E, = 36 (lossless [29]) and E, = 50 - j12 (lossy) as shown in Fig. 3. The RCS is plotted versus 

the parameter ku , where u is the radius of the sphere, k = 27c/h,, h, = 3 x 10' / f  (m) is the free 

space wavelength, and f is the frequency of the incident waves. These results are obtained using 

the MOM where the sphere is discretized into 764 triangular patches leading to 2292 electric and 

magnetic unknown coefficients. The plane wave is used for excitation at normal incidence 

(8' = 0" ) with the electric field is in the x-direction as shown in Fig. 3. The electric field in this 

case is parallel to the plane of incidence (2-x plane), which represents the vertical polarization 

(V-pol.). All results of Fig. 3 are for the co-polarized scattered waves in the backscatter 

direction. The results show that the RCS of the lossless spheres exhibits a sharp resonant 

scattering upon varying the parameter ka . The results of the lossless sphere with E, = 36, show 

full agreement with those obtained using the Mie solution and reported in [29]. Notice that the 

magnitude of the RCS is tremendously reduced when the sphere becomes lossy (E, = 50 - $2). 

Moreover, the very sharp peaks obtained for the lossless sphere at the resonant frequencies are 

not shown in lossy case. The relative dielectric constant of E, = 50 - j12 simulates the 

electrical property of a malignant tumor which implies that E: =50 and the 
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conductivity CT=OE"/E,  =4.0S/mat f = 6 GHz [18], [19], [22]. The results show that the 

magnitude of resonance spectra of the lossy sphere is much smaller than those of the lossless 

one. 

iv. Effect of the presence of an interface: 

In Example 2, the effect of the presence of an interface on the observed resonant scattering is 

investigated. A lossless sphere with E,, =50 is buried at depth d measured from its center 

beneath the flat interface of Fig. 2a. The surrounding medium is slightly lossy with 

E , ~  = 2 - j O . 1 .  To eliminate edge excitations, the interface is excited using plane waves tapered 

towards the edges of the flat surface, i.e. using a Gaussian beam as discussed in [25], [50]. The 

incident waves are in the normal direction with the electric field in the y-direction, Le. 

perpendicular to the plane of incidence (2-x plane), which represents the horizontal polarization 

(H-pol.). The RCS for just the buried sphere is plotted vs ka in the backscatter direction as 

shown in Fig. 4. 

The dimensions of the modeled flat surface (i.e L, x L,)  are 2.941, x 2.941, and the 

sphere's location is centered with burial depths d = -0.31, and d = -0.6X0 as shown in Fig. 4. 

The incident Gaussian beam used in this work has width equal to 1.21,. The flat interface is 

discretized into 4,802 triangular patches (i.e., discretization rate is 0.061,) leading to 14,210 

electric and magnetic unknown coefficients. For each value of the depth d, the MIM-SDFMM 

computer code was executed 81 times for the values of ka from 0.2 to 1 in steps of 0.01. 

In Fig. 4, the RCS results clearly exhibit sharp peaks at certain values of the parameter ka 

despite of the presence of the interface. It is important to mention that finer resolution for ka 

could lead to increasing the magnitude of some of these sharp peaks. As the burial depth 
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increases to d = -0.61, , the magnitude of the sharp peaks is accordingly reduced as shown in 

the figure. 

v. Computational issues: 

It is important to emphasize that varying the parameter ka in each run requires solving both 

(2a) and (2b) only once except when the computer code starts, then it requires solving (2a) twice. 

This leads to saving more than 30% of the computation time. The total CPU required to obtain 

the solutions using the Compaq Alpha Server (GS140 EV6) with 667 M H z  clock speed is 

approximately 22 hrs for each full plot in Fig. 4 (i.e., for each 81 runs). Moreover, to speed up 

the computations, only a single interaction between the sphere and the interface is considered 

(Le., n = 1) as discussed earlier. The MIM-SDFMM is tested when more interactions are 

considered (i.e. for n = 2, 3, ... , not presented here), leading to insignificant differences due to 

the higher order interactions. This observation was proved in [45], particularly, when the 

surrounding medium was lossy. This justifies accounting for only the first interaction, i.e. n =1, 

in all numerical results presented in Section 111. 

III. NUMERICAL RESULTS 

Several examples for the resonance spectra of malignant tumors buried in normal breast 

tissues are presented in this section through out Examples 3-9. In these examples, the effect of 

tumor’s shape, burial depth, electrical properties and orientation on the resonance spectra are 

investigated. Moreover, the output of changing the electrical properties of normal breast tissues 

and breast geometry, the polarization, the direction and the fkequency of the incident 

electromagnetic wave is presented as well. The investigations are discussed as follows: 
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1. Tumor’s burial depth: 

In Example 3, a lossy medium is assumed in order to simulate the normal breast tissues 

properties at the microwave frequencies. The dielectric constant is E,, = 9.0 - j1.2 which 

implies that E: =9.0 and 0=0.4S/m at f = 6 GHz [18], [19], [22]. The lossy sphere of 

dielectric constant E,, = 50 - j12 to simulate the malignant tumor is buried under the flat 

interface of Fig. 2a, at a variety of depths fiom d = -0.3h0 to d = -0.7h0, the results are shown 

in Fig. 5a. The co-polarized backscattered RCS for just the tumor clearly exhibits a resonance 

scattering even when it is buried in such a lossy medium. These results show that the buried 

tumor’s resonance phenomenon survived the interface and the lossy surrounding environment for 

both burial depths. However, the tumor’s burial depth mostly affects the magnitude of the 

spectra and not the resonance locations. 

ii. Variety of electrical properties: 

It is also important to investigate a variety of the breast and tumor electrical properties on 

the resonant scattering as shown in Fig. 5b. The dielectric values are obtained fiom the 

measurements reported in the literature as (i) E,, = 9.0 - j1.2, E,, = 50.0 - j12 at f = 6 GHz [18], 

[19], [22], (ii) E,, = 10 - jl.97, E,, = 45 - j16.87 at f = 3.2 GHz (the lower limit values reported 

in table 5 in [14]), (iii) E,, = 9.8- j2.08, E,, = 46- j25.87 at f = 3.2 GHz (for patient no. 37 

reported in Table 2 in [14]), (iv) E,, = 15 -j3.6, E,, = 52-j18.4 at f = 1 GHz reported in [16], 

and (v) E,, = 25 - j5.9, E,, = 60 - j22.49 at f = 3.2 GHz (the upper limit values reported in 

Table 5 in [14]). As expected, when the normal breast tissues become more lossy, the scattering 

magnitude at the resonant frequencies @e., the maximum points) decreases accordingly as 

shown in Fig. 5b. 
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iii. Multiple frequency: 

In Example 4, the resonant scattering is investigated vs the fiequency from 1 to 10 GHz. The 

dielectric constants presented in Fig. 1 are used in this example [20]. Notice that the real and 

imaginary parts of the dielectric constants of normal breast tissues are almost constant in this 

range of frequency, which is not the case for the malignant tumor. To speed-up the calculations, 

only the change in the malignant tumor’s dielectric constant with fiequency is incorporated in the 

computer code, keeping the dielectric constant of the normal tissues constant at E, =lO-jl.2 

(see Fig. 1). This assumption justifies computing and storing the elements of the breast 

impedance matrix, .Zs,s only once, when the computer code starts, leading to considerable 
- 

saving of the computation time. In Figs. 6a-b, the backscatter RCS at normal incidence is plotted 

versus the frequency from 1 to 10 GHz in steps of 100 MHz. The tumor is modeled as a sphere 

of radius a ranges from 1 mm to 6 111111, and is buried beneath the flat surface of Fig. 2a at d = - 

lcm and d = -5cm as shown in Figs 6a and 6b, respectively. As expected, the results show that 

the tumor spectrum varies with the radius a ,  however, when the radius becomes 2 mm or less, 

larger fiequency range is required. This indicates the difficulty of detecting small tumors (less 

than 2 mm) since the surrounding medium becomes more lossy at these high frequencies. 

Moreover, upon comparing the results of Fig. 6a with those of 6b, it is clear that the tumor’s 

burial depth af5ects the magnitude of the spectra rather than their locations. 

iv. Incident and scatter directions and polarization: 

In Example 5, a variety of incident directions are investigated. The 3-D curved geometry 

depicted in Fig. 2b is used to simulate the breast in this case. This geometry is assumed to have a 

sinusoidal shape given by H ( x ,  y) = (h,, / 21cos(2xp/ A) + 1) ; h, is the breast height, 

p = d(x -A / 2)2 + (y - A / 2)2 and A = L, = L, where L, and L, are the x- and y-dimensions, 
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respectively. In Figs. 7a-c, the RCS for just the spherical timor is plotted as function of the 

parameter ka. The tumor burial depth is d = +0.3h, and the breast height is ha = 0.5h0 (see 

Fig. 2b). In Fig.7a, the results show the co-polarized RCS for the H-polarization wves with 

normal incident angle ( S i  =On) .  The scattered waves are received at three directions: (i) 

9" = 0" (backscatter direction), (ii) 9" = 45",4" = 0" (forward direction) and (iii) 

9" =45",$" = n o  (backward direction). The dielectric constants are assumed to be 

E,, = 9.0 - j l .2 for the normal breast tissues and E,, = 50.0 - j12 for the malignant tumor. As 

expected, the scattered intensity in the backscatter direction at normal incidence is larger than 

those in the forward or in the backward directions. 

In Figs. 7b and 7c, the co-polarized scattered RCS at the oblique incident direction 

9' = 45", bi = 0" , are shown for the H- and V-polarizations, respectively. The results clearly 

show the resonant scattering for both polarizations and for all three scattering directions 

(9" = O", $4" = 45",4" = Oo, and 9" = 45",4" = no). Larger magnitudes were observed in the V- 

polarization case. For the H-polarization, the magnitude at the resonant frequencies (i.e. the 

maximum points) occurs almost at the same locations for all three scattering directions as shown 

in Fig. 7b. However, for the V-polarization case, some of these locations are shifted with 

changing the scattering direction as shown in Fig. 7c. Interestingly, only in the backscatter 

direction (i.e., 9" = 45",9" = no), the maximum points occur at the same locations for both the 

H- and V-polarizations. 

It is important to mention that the forward direction defined in this work indicates scattering 

in all directions above the interface, where the receiving antenna should be located (i.e. above the 

breast surface). This definition is completely different from the forward direction for scattering 

14 



from a sphere immersed in free space, which is exactly a 180' from the incident direction as 

described by Larsen et a1 in [9]. No resonance was observed in the forward direction in Larsen 

et a1 results [9], which is not the case in this work as demonstrated in Figs. 7a-c. 

v. Total scattered intensity and validation with the MOM: 

As discussed in Section 11, the above resonant scattering are obtained by calculating the 

electric and magnetic surface currents induced on the breast surface due to the presence of the 

malignant tumor. However, the currents induced on the breast surface due to the incident waves 

(i.e., the transmitting antenna) cannot be differentiated from those induced due to the presence of 

a tumor. In other words, the surface current induced on the breast is the summation in complex 

vectors of both currents as discussed in Section 11. 

Therefore, in Example 6, the total currents induced on the breast surface are used to obtain 

the total scattering intensity. These results are for the H-polarization at normal incidence with 

the same dielectric constants and burial depth of Fig. 7. The results clearly exhibit the resonance 

phenomenon compared with the case where no tumor was present. In order to validate these 

interesting results, a second multiple interactions between the tumor and the interface (i.e. n = 2) 

is taken into account showing the 111 agreement with those produced using n = 1. In addition, 

the MOM is used to validate both cases demonstrating good agreement with acceptable errors for 

larger ku. It is observed in Fig. 8 that the maximum magnitude of the resonance located 

between ka = 0.7 and ku = 0.8, is 0.35 compared with 0.015 in Fig. 7a. This is because the 

same incident power ( P i )  is used to normalize the RCS results in both cases. 

vi. Non-spherical tumor: 

In Example 7, a non-spherical malignant tumor is investigated. In this work, the tumor is 

assumed to have a prolate spheroid shape. The curved breast geometry depicted in Fig. 2b is 
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used here, with the dimensions of the prolate spheroid given by a and b , where a = 2b. Three 

incident directions are used here as; (i) 0' = 0'; (ii) 8' = 45",4' = 0 and (iii) 8' = 25",+' = 130' , 

for both the H- and V-polarizations. The dielectric constants are assumed to be E,, = 9.0 - jl .2 

for the normal breast tissues and E,, = 50.0 - j12 for the malignant tumor. In this example, the 

original definition of the RCS (i.e., 4 ~ r ~ 1 P 1 ~  /2q0P') is used but upon integrating the scattered 

intensity over the scattering directions in the plane of incidence, i.e., 8" = O", lo ,  2" ---, 89" at both 

4' - 4i = 0" (forward direction) and $" -4' = 180°(backward direction). Then it is normalized 

with the cross section area nu2. 

In this example, the average of the RCS with respect to the polarization (i.e., the H- and V- 

polarizations) is processed and plotted versus ku as shown in Figs. 9a-c. In Fig. 9% the results 

are shown for just a malignant tumor horizontally oriented and buried at depth d = H.3b 

measured fiom its center. In this case, the Euler's angles are a, = p,, = y, = 0". On the other 

hand, in Fig. 9b, the results are shown for the same tumor but randomly oriented and buried at d 

= +0.25b, with the Euler's angles a, =lOo,Py =15",y, =5". Interestingly, the results in Figs 

9a and 9b show that the resonance occurs approximately at the same values of ku regardless of 

the incident angles. However, the results show that the magnitude of these spectra depends on 

both the incident angle and the object orientation upon comparing Fig. 9a with Fig. 9b. 

vii. Averaging over incident directions: 

The interesting results in Figs. 9a-b suggest that taking the average over the incident 

direction can produce invariant spectra for the malignant tumor regardless of its orientation as 

clearly shown in Fig. 9c. Notice that the two spectra shown in Fig. 9c look very similar, except 

for the magnitude, which is due to the difference in the burial depth (0.3ho in Fig. 9a vs 0.2510 in 
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Fig. 9b). These results indicate that the spectra of the malignant tumor are invariant with the 

incident polarization, the incident and scattered directions. However, these spectra depend on 

the physical characteristics of the tumor, i.e., the shape and the electrical properties of its tissues. 

These conclusions agree with the results reported in [29] in which lossless objects were 

immersed in free space. Moreover, the results show that the burial depth mostly affects the 

magnitude rather than the resonance locations as shown in Fig. 9c. This observation also agrees 

with the results reported in [39] where the natural resonant fiequencies of a mine buried in 

dispersive layered half space were investigated versus its burial depth. Interestingly, the 

spherical tumor’s spectra shown in Fig. 7 are different from those of the spheroid tumors shown 

in Fig. 9, which also agrees with the conclusions reported in [29]. This observation can be used 

to classify the malignant from benign tumors as discussed in [ 181. 

The approach presented in this work can be used to detect andor discriminate between 

malignant and benign breast tumors by establishing a library for the spectra of all possible 

tumor’s shapes and tissues. This is feasible using the SDFMM fast model. However, it is 

essential to investigate the effect of the skin thickness and any breast inhomogeneities on the 

resonance phenomena. The skin layer is very strong scatterer at the frequency range 1 - 10 GHz, 

therefore, including it in the model may change the resonance spectra of the tumor. This issue 

will be investigated as a future work. 

IV. CONCLUSIONS 

The fast algorithm, MIM-SDFMM, is used in this work to investigate the resonance 

scattering of the malignant breast cancer tumors. The results show that the resonance scattering 

phenomenon is invariant with the incident polarization, the incident or scattered directions and 

the burial depth (except for the magnitude). The spectra vary only with the tumor’s shape and 
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material. This makes the resonance spectrum a unique characteristic for the tumor that can be 

utilized to detect andor discriminate between malignant and benign breast tumors, since they 

differ considerably in shape and material. The results of this work can provide a useful guidance 

for selecting the frequency range suitable to tumor’s characteristics. 
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Figure 1. The relative dielectric constant ( E ,  = E' - j ~ "  ) vs the frequency for the normal and 
malignant breast tissues obtained using equation 1 in Ref. [20]. 

Figure 2. Cross section of a spherical tumor buried beneath (a) a flat air-breast interface showing 
the multiple interactions mechanism with n = 2, (b) side view of the 3-D curved breast geometry. 

Figure 3. Co-polarized backscatter RCS vs the normalized radius ka for a sphere immersed in air 
for three cases of relative dielectric constants 50-j12, 50 and 36 at 9' = O o  and V- 
polarization. 

Figure 4. Co-polarized backscatter RCS vs the normalized radius ka for just a buried sphere 
beneath a flat interface (depicted in Fig. 2a) with Erl= 1 (air) and E ~ Z  = 2.0-jO.1 and ~ r 3  = SO at two 
burial depths (d = -0.3ho and -O.6ho), H-polarization at 9' = 0". 

Figure 5. Co-polarized backscatter RCS vs the normalized radius ka for just the spherical tumor 
with (a) EQ = 9.0-j 1.2 and ~ r 3  = SO-j 12 for breast tissues, (b) with a variety of dielectric constants 
for the tumor and breast tissues. All results are for 9' = 0" and H-polarization. 

Figure 6. Co-polarized backscatter RCS vs the frequency for just the spherical malignant tumor 
of dielectric constants varying with the frequency (see Fig. 1) and buried in normal breast tissues 
with ~ r 2  = 10.0-j 1.2, beneath the flat breast depicted in Fig. 2a at depth (a) d = lcm, (b) d = Scm. 
All results are for 9' = 0" and H-polarization. 

Figure 7. Co-polarized RCS vs the normalized radius ka for just the spherical malignant tumor 
( ~ ~ 3  = SO-j 12) buried at d = +0.3h in n o d  tissues ( ~ ~ 2  = 9.04 1.2) as depicted in Fig. 2b for (a) 
9' = 0" H-polarization, (b) 9' = 45", H-polarization, (c) 9' = 45", V-polarization. 

Figure 8. Co-polarized backscatter RCS vs the normalized radius ku for just the spherical 
malignant tumor with ~ r 3  = 50-j 12, buried at d = +0 .3b  in normal breast tissues with ~ r 2  = 9.0- 
j 1.2, (see Fig. 2b). H-polarization and 9' = 0' . 

Figure 9. Normalized average RCS vs the normalized radius ka for just the prolate spheroid 
malignant tumor ( ~ ~ 3  = 50412) buried in normal breast tissues ( ~ r 2  = 9.0-j1.2), where a = 2b for; 
(a) horizontally oriented prolate spheroid at depth d = +0 .3b ,  (b) randomly oriented prolate 
spheroid at depth d = +0.25ho, (c) the average of (a) and (b) over the three incident directions. 
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PART I1 
Numerical Assessment of Multifrequency Microwave Radiometry 

for Sensing Malignant Breast Cancer Tumor 

Magda El-Shenawee 
Department of Electrical Engineering 

University of Arkansas 
magda@,uark.edu 

Abstract 

A numerich study of microwave radiometry for malignant breast cancer tumor is presented. 

The numerical results show that the brightness temperature of malignant tumors exhibits a 

resonant behavior versus the frequency. The brightness magnitude decreases with the tumor 

burial depth, however, the resonance fiequencies depend only on the tumor’s size and material 

and are independent of the burial depth. 

Key words: Radiometry, Breast cancer, Computational EM, Multifrequecny, Reflectivity. 

I. INTRODUCTION 

Recently, the microwave radiometry has shown potential promise in several subsurface 

sensing applications [ 11-[8]. Numerous work on using multifiequency microwave radiometry 

was published [2], [3], [8]. In the current work, the emphasis will be on the numerical evaluation 

of brightness temperature for malignant breast cancer tumor and its behavior as function of 

frequency. 

The basic idea of using microwave radiometry in breast cancer detection is measuring the 

natural electromagnetic radiation or emission from the female breast at microwave frequencies. 

This electromagnetic radiation changes considerably with the presence of malignant breast 

cancer tumors [4]-[8]. In particular, the thermal activity of the female breast is a measure of the 

tumor growth rate, which can provide information even beyond the physical parameters of the 
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tumor such as its size, material and location [6]. In [4], the authors presented results based on 

4 18 normal female patients to show the temperature symmetry between the left and right breasts. 

Therefore, the temperature deviation between the left and right breasts is often used to diagnose 

the breast cancer in one breast [4]-[6]. 

As presented and shown in [4]-[6], the medical microwave radiometry has a number of 

advantages such as the early diagnosis of the cancer before even forming the tumor mass 

contrast, the non-invasiveness of the technique, the absolute harmless for the patients of all ages, 

and the range of tumor burial depth is 3-10cm. However, there are some barriers in this 

technique mainly the required sensitivity of the receiving antenna due to the small-received 

thermal signals relative to the surrounding noise signals [4]-[6]. 

The objective of this work is to computationally evaluate the brightness temperature as 

function of the frequency, tumor size, burial depth and location. The output of this study can be 

used to understand the thermal radiation phenomenal which will aid in designing enhanced 

radiometers for breast cancer early detection. The multiple interaction model combined with the 

fast computational technique, the Steepest descent Fast Multipole Method (SDFMM), [9]-[lo] is 

used here to compute the reflectivity and hence the brightness temperature due to the presence of 

malignant tumor in the breast. 

The geometry of the problem is depicted in Fig. 1, where the breast surface is assumed flat 

and the tumor is modeled as a sphere of radius a and buried at depth d measured from its center. 

The figure shows the position of the radiometer (applicator) in the near zone to the breast and it 

shows also the multiple interactions mechanism between the tumor and the breast surface. For 

simplicity, the thickness of breast skin layer and any interior breast inhomogeneities are not 

accounted for in this model. A curve fitted data for electrical properties of the malignant tumor 
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and normal breast tissues are plotted in Fig. 2 versus the frequency range 1 - 1 OGHz. These results 

are based on published experimental measurement data [l 11. 

11. FORMULATION 

The brightness temperature TB of an isothermal medium is given by [l], [3]: 

TB(S,(P,P,f,&rZ,Er3,g)=Ts(l-r) (1) 

where the angles 9 and cp are radiometer observation elevation and azimuth angles, 

respectively, f is the radiometer observation frequency, p is the polarization of the radiometer 

(horizontal h or vertical v), ~ r 2  is the dielectric constant of the medium, ~ r 3  is the dielectric 

constant of the buried object, and g represents the object geometrical dimensions. The total 

reflectivity of the medium with buried object is represented with r, while the physical 

temperature of the medium and the object is expressed by T, [2]. 

The power reflection coefficient or reflectivity r and the transmissivity Y are defined as the 

normal components of the time-average Poynting's vectors given by [l]: 

- -  
where gu = Re(E x H')/2 is the time-average Poynting vector. The subscripts r, t and i represent 

reflected, transmitted and incident waves, respectively, and i is a unit vector normal to the flat 

interface as shown in Fig. 1. In the case of semi-infinite medium with no buried object, the 

reflectivity and the transmissivity can be obtained in closed forms [l]. In this case, they become 

functions of the reflection and transmission coefficients upon illuminating the semi-infinite flat 

interface with plane waves [l], [2]. 
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However, the current problem is different due to the presence of a buried object, i.e. the 

tumor, in the flat medium, i.e. the breast. The idea here is to computationally evaluate (2a) and 

(2b) to obtain the reflectivity and transmissivity, respectively, of the whole scatterer (i.e. the 

medium with the buried object). In this case, the air-flat interface is modeled with a truncated 

square surface [9], [lo] and to eliminate the edge excitations, an incident Gaussian beam is 

employed. The Gaussian beam is basically is a summation of plane waves tapered towards the 

surface edges [9], [lo]. The size of truncated surface and the incident half beam width should be 

much larger than the buried object. The total brightness temperature is reformulated to account 

for the buried object as follows [2]: 

T, (9, CP, P, f, E,, , sr3,  g )  = Ty (1 - rmf - pi j  / p i )  (3a) 

where the subscripts surf and obj indicate the interface surface and the buried object, 

respectively. The total incident power is given by P i ,  the power reflected due to the object only 

is Poij, and rmf is the reflectivity of the flat surface with no buried object. The multiple 

interaction model presented in [ 101 is used here to compute the equivalent surface currents on the 

air-medium interface. These currents can be decomposed into two quantities, one is due to the 

external excitation and the second is due to the multiple interactions with the tumor (see Fig. 1). 

The deviation in brightness temperature due to the presence of the tumor is expressed as [2]: 

AT, ( ~ , c P ,  P, f, ,Er3 g > = -T, (p:, /p i  ) (3b) 

The surface currents due to the interactions with tumor is used to compute the reflected 

power Poij and hence to obtain the deviation in brightness temperature [12]. In practice, this 

deviation represents the differential in temperature between the left and right breasts to detect the 

cancer [4]-[6]. 
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III. NUMERICAL RESULTS 

In Example 1, the reflectivity r and transmissivity Y of a lossless flat medium Rith no buried 

object are computed. The relative dielectric constant is assumed E, =2.55 and the truncated 

surface is assumed 240cmx240cm. The incident and observed waves are assumed in normal 

direction for all cases in this section. The objective of this example is to validate the numerical 

computations of reflectivity and transmissivity obtained using the SDFMM with those obtained 

using the closed forms for semiinfinite medium excited with plane waves [ 13. The ratios of the 

time-average power densities in (2a) and (2b) are computed using the SDFMM with resolution of 

1.2 cm [9], [lo], [ 121. Briefly, the calculated surface currents on the flat medium are used to 

radiate electric and magnetic fields at 3cm above and below the interface. No dependency on this 

distance is observed in the reflectivity or transmissivity for lossless medium. For lossy medium, 

the fields are compensated with the attenuation factor. However, smaller distances affected the 

accuracy of the near field calculations [12]. The medium reflectivity and transmissivity are 

plotted in Fig. 3 versus the x-direction at y = 120cm. Excellent comparison is shown within a 

square spot of 150cmx 150cm centered at x = 120cm, y = 120cm, which is the center of the 

Gaussian beam footprint. As shown in Fig. 3, the beam width is 2W = 96cm which implies, as 

expected, that plane waves can be assumed within the spot area of 2Wx 2W. The reflectivity and 

transmissivity are added up to unity as shown in Fig. 3. Moreover, at normal incidence, the 

results for the vertical or horizontal polarizations are similar. 

In Fig. 4, the same data of previous example is used and a comparison is shown for the 

reflectivity and transmissivity but for a slightly lossy medium. The relative dielectric constant 

here is E, = 3.55 - j0.4 (Loamy soil with 5% moisture [ 11). Because the computed time-average 

power densities are obtained at 3cm below the interface as explained earlier, the field values in 
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this case are multiplied by exp(2aZ), where c1 is the medium attenuation constant and 1 = 3 cm. 

The computed results show excellent agreement with the closed forms in [ 11 and also within the 

same spot area 2 Wx 2 W similar to the previous lossless case. 

In Fig. 5 ,  the reflectivity and transmissivity of normal breast tissues with relative dielectric 

constant E, = 10 - j l .2  are computed, see Fig.2 and [l 11. Notice that the normal breast tissues 

have almost the same dielectric constant in the microwave frequency range 1-10 GHz. The 

results are plotted versus the x-direction per wavelength and at y = 4h,. The modeled surface 

dimensions are 8h, x 8h0, where h, is the free space wavelength. Also in this example, the 

computed values of the transmitted fields are multiplied by exp(2aZ), with I = 0.11, , the near 

field resolution is 0.04h0 and the half beam width is W = 1.6h0. The reflectivity and 

transmissivity, upon compensation with the attenuation factor, are added up to unity as shown in 

Figs. 4 and 5 .  The reflectivity in Fig. 5 is larger than it in Figs. 3 or 4, which is due to the larger 

dielectric constant of the medium in this case 10 - jl .2, as shown in Fig. 2. As expected, the 

transmissivity in Fig. 5 is smaller than it in Figs. 3 or 4 due to the larger conductivity of the 

medium in this case. Notice the slight oscillations in the trasnmissivity and reflectivity in Fig. 5 ,  

which are due to the increase of edge reflections in this case. This could be decreased by 

increasing the Gaussian beam tapering, i.e. decreasing W [9], [lo]. 

In Figs.3-5, a validation is demonstrated in computing the reflectivity and transmissivity 

using the SDFMM. In Fig. 6, the time-average reflected power density go, due to only the 

malignant tumor is plotted versus the x-direction at y = 41,. The malignant tumor is modeled by 

a sphere of radius a = 5mm and is buried at depth of d = 2cm measured from its center as 

depicted in Fig. 1. The dielectric constant of the malignant tumor is varying with frequency as 
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shown in Fig. 2, while the dielectric constant of the normal breast tissues is assumed constant as 

E, = 10 - j l .2.  The frequency ranges fiom 1-5 GHz in steps of 200 MHz, which implies that 

there are 21 curves plotted in Fig. 6. Notice that the dimension of the plane wave square spot 

area, as shown in Figs. 3-5, ranges from 96 cm to 19.2 cm. This area is considered much larger 

than the diameter of the tumor, which is Icm in this case. The purpose of Fig. 6 is to show that 

the waves reflected due to the tumor are sensed within the spot area of 2Wx2Wfor all 

considered frequencies. The tumor reflected waves are spherical waves as discussed in [2]. 

The emphasis of the following examples is to demonstrate the behavior of thermal emissivity 

or tumor brightness temperature versus frequency. Therefore, in Fig. 7, the reflectivity due to the 

tumor is plotted versus the frequency from 1-5 GHz in steps of 200 MHz. The tumor radius and 

burial depth are 5mm and 2cm, respectively. The tumor reflectivity is obtained by computing the 

term (P;, / P i )  in (3b) which is obtained by integrating the time-average reflected power density 

gar due to the tumor and the time-average incident power density gai of the Gaussian beam 

over the radiometer cross section area A, where A I2Wx2W as explained in Figs. 3-5. As an 

example, the radiometer cross section was lcmx2.3cm at 3.3 GHz in [4]. As expected, the total 

reflected power Poi, depends on the cross section area A of the receiving antenna (i.e. the 

radiometer or applicator) as shown in Fig. 7a. For simplicity, the radiometer cross section is 

assumed a square with dimension ranges from 0.25 h, - 2 h, . The results clearly show the 

oscillatory behavior of tumor reflectivity versus frequency with peaks occur at 3 GHz and 4.5 

GHz. Also, the results show that the smaller the observing area A, the larger the magnitude of the 

sensed tumor reflectivity. Upon multiplying the reflectivity of Fig. 7a with the physical 

temperature T,, the deviation in brightness temperature due to the presence of the tumor is shown 

in Fig. 7b. The physical temperature of breast tissues vary with women’s age, e.g. for 50 years 
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old age, the average temperature of the breast is assumed 33.7 OC (or 306.85 K) as reported in 

[5 ] .  Naturally, the tumor's physical temperature is different form the surrounding normal breast 

tissues since they vary in material as shown in Fig. 2. However, in this work it is assumed that 

the physical temperature T, in (3a) and (3b) is the average temperature for the breast which is 

reported for a variety of ages in [5].  

In Fig. Sa and Sb, a parametric study for the brightness temperature deviation ATB is 

investigated versus the frequency with the radiometer cross section area A = 0.251, x 0.251, . In 

Fig. Sa, ATB is plotted for several burial depths 14 cm where the tumor radius a, is assumed 5 

mm. The results show that the brightness temperature oscillates at the same frequencies 

regardless of the burial depth. However, the brightness magnitude decreases with the burial 

depth increase due to the large attenuation in normal breast tissues at microwave frequencies. In 

Fig. Sb, ATB is plotted for several tumor radii 2-5 mm buried at the same burial depth of 2 cm. 

The results clearly show the brightness oscillating behavior for all sizes, however, for larger 

tumor radius the temperature peaks at lower frequencies and vise versa. 

In all above examples, the tumor was buried in the center of the modeled breast at (4ho,4ho). 

In this example, the tumor is buried off center at (3.210, 4.8b), i.e. in upper left quadrant of the 

breast. The tumor radius is a = 5 mm and is buried at 2 cm. The deviation in brightness 

temperature ATB is plotted in Fig. 9 for several radiometer square cross section areas with 

dimensions range as 0.25b - 3 b .  The results show that the brightness temperature increases with 

the increase of the cross section area up to A = 21, x 21, and after that it starts to decrease. This 

observation contradicts the results of Fig. 7b where the brightness temperature increases with the 

decrease of A. The reason of this contradiction is that in Fig. 7b both the tumor and radiometer 

cross section are located at the center of the modeled breast. However, in Fig. 9, the radiometer 
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location is kept in the breast center, while the tumor is moved to the breast upper left quadrant at 

(3.2A0, 4.8ho). This implies that for values of A smaller than 1 .6h0 x 1 .6h0, the radiometer does 

not sense the tumor because it is located outside this area. The radiometer location is 

experimented and the results show that when it is re-located and centered exactly above the 

tumor, a greatly enhanced brightness temperature is received. For cross section area equal to 

2h0 x 2h0, the exact results of Fig. 7b are obtained. This suggests that scanning breast surface 

with localized radiometer cross section is better than observing the brightness temperature from 

the whole breast. 

IV. CONCLUSIONS 

The conducted numerical evaluation for breast cancer tumor’s brightness temperature shows 

clear oscillatory behavior versus the frequency. The results show that the peaks of brightness 

temperature occur at the same fiequencies regardless of the tumor’s burial depth, however, the 

oscillating frequencies depend on the tumor’s size and material. These observations can be used 

to enhance the radiometer design parameters such as the operating frequency or multiple 

frequencies, the bandwidth and the radiometer receiving cross section area. This statement is 

considered a future work in collaboration with NASA Langley Research Center. 
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Radiometer 

Fig.1. Cross section of a spherical tumor buried beneath a flat air-breast interface 
showing the multiple interactions mechanism with n = 2. 

44 



\ 
I 

35 

30 

25 

20 

- - E' Normal breast tissues 
- .. E" Normal breast tissues 

- - -  E' Malignant tumor - . I E" Malignanttumor 
- 

- i 

0 
1 2 3 4 5  6 7 8 9 10 

Frequency (GHz) 

Fig. 2. The relative dielectric constant (E, =E' - jc" ) vs frequency for the n o d  and malignant 
breast tissues obtained using equation 1 in Ref. [20]. 
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Fig. 3. Reflectivity and transmissivity of a lossless flat medium with relative dielectric constant 
cr = 2.55. The solid curves represent the SDFMM results for both the vertical and horizontal 
polarizations and the dotted curves represent the closed forms of the semiinfinite medium. 
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Fig. 4. The reflectivity and transmissivity of a slightly lossy flat medium with no buried object 
and relative dielectric constant E, = 3.55 - j 0 .4  (Loamy soil with 5% moisture [l]). 
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Fig. 5. The reflectivity and transmissivity of normal breast tissues with relative dielectric 
constant of E, = 10 - jl.2 (see Fig.2 and [20]). 
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Fig. 6. The time-average reflected power density of the malignant tumor only versus the x- 
direction. 
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Fig. 7a. The reflectivity of malignant tumor versus fiequency. The tumor radius is a = 5 mm and 
it is buried at depth of 2 cm measured fiom its center (see Fig. 1). 
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Fig. 7b. Brightness temperature deviation ATB due to the presence of malignant tumor of radius 
a = 5mm buried in normal breast tissues for same data of Fig. 7a. 
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Fig. 8a. Brightness temperature deviation ATB due to the presence of malignant tumor in normal 
breast tissues. The radiometer cross section is assumed as A = 0.25h, x 0.25h0 . 
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Fig. 8b. Deviation in brightness temperature ATE due to the presence of malignant tumor in 
normal breast tissues. The radiometer cross section area is A = 0.251, x 0.251, . 
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Fig. 9. Deviation in brightness temperature ATB due to the presence of malignant tumor in normal 
breast tissues. The tumor radius is a = 5 mm and is located at (3&, 4.8b). The radiometer 
cross section area A is centered at (4ho,4ho). 
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